УДК 519.6

Моделирование ударно-волновых структур на начальном участке недорасширенной сверхзвуковой струи

И.А. Широков¹, Т.Г. Елизарова²

¹Московский государственный университет им. М.В. Ломоносова ²Институт прикладной математики им. М.В. Келдыша РАН, Москва

E-mail: ivanshirokov@inbox.ru

Выполнено моделирование сверхзвуковой недорасширенной воздушной струи с применением квазигазодинамического алгоритма. Исследован процесс развития струйного течения во времени и формирования областей нестационарного течения. Получено хорошее качественное и количественное соответствие результатов экспериментальным и расчетным данным, известным из литературы. Показано, что квазигазодинамический алгоритм позволяет изучать структуру ударно-волновых областей в ближней зоне течения, а также описывать общий характер струйного течения.

Ключевые слова: квазигазодинамические (КГД) уравнения, струйное течение, ударно-волновые структуры.

Введение

Исследование струйных течений газа имеет большое значение для перспективных разработок в области двигателестроения. Экспериментальное изучение струй широко распространено, но связано со значительными затратами, и его реализация возможна не для всех задач, интересных с практической точки зрения. В связи с этим, разработка и валидация методов компьютерного моделирования струйных течений представляется важной задачей.

В работах [1, 2] были представлены экспериментальные результаты, полученные в лабораторных условиях при исследовании истечения воздушных струй с различными параметрами в область неподвижного воздуха при нормальных условиях. Приведенные в этих работах осевые профили давления и числа Маха могут служить эталонными данными при валидации методов компьютерного моделирования. При этом в экспериментах наблюдается порядка десяти ударно-волновых структур («бочек»), возникающих при струйных течениях на нерасчетных режимах (когда давление на срезе сопла не совпадает с внешним давлением). Сложность численного моделирования подобных течений заключается в том, что разностные алгоритмы часто не позволяют в сильно нестационарном течении разрешить наблюдаемое в эксперименте число «бочек».

© Широков И.А., Елизарова Т.Г., 2024

Работы [3, 4] также посвящались экспериментальным исследованиям околозвуковых и сверхзвуковых недорасширенных воздушных струй. При этом изучались и визуализировались трехмерные распределения плотности [3], температуры и средней скорости [4]. Параметры струй, исследованных авторами в [3, 4], отличаются от таковых в работах [1, 2]. В частности, в работе [4], в отличие от [1–3], использовался подогрев струй.

Существует большое число работ, посвященных численному моделированию струйных течений с использованием разнообразных вычислительных подходов, полный обзор которых не представляется возможным. Некоторые из них приведены в списке литературы (см., например, [5-7]). Тем не менее, анализ известных публикаций показывает, что имеющиеся алгоритмы не позволяют получать в расчетах большое число «бочек», которое наблюдается в ряде экспериментов. Причиной тому является ряд факторов: слишком большая или неадекватная схемная вязкость, наличие нестационарных или турбулентных эффектов в струе, моделирование которых требует тонкой настройки применяемых в расчете моделей турбулентности либо аккуратного моделирования нестационарного поведения всей струи в целом.

В работе [5] проводилось моделирование сверхзвуковой струи на основе данных эксперимента [1], послужившего основой для постановки задачи и в настоящей работе. Авторы [5] использовали метод Годунова повышенного порядка для решения осредненных уравнений Навье - Стокса совместно с различными моделями турбулентности. Было получено, что осевые профили давления в ближней зоне (первые 4-5 «бочек») хорошо соответствуют экспериментальным профилям (хотя амплитуда колебаний профиля меньше экспериментальной амплитуды даже в первых «бочках»), а на удалении от сопла и амплитуда, и частота демонстрируют значения заметно меньше экспериментальных. В работе [6] (см. страницу 104) также проводилось моделирование недорасширенной струи путем решения осредненных уравнений Навье-Стокса совместно с моделями турбулентности SST и SA, затем результаты сравнивались с экспериментальными данными [1]. Полученные результаты в целом соответствовали результатам расчетов [5] и экспериментальным данным. Таким образом, специальная настройка моделей турбулентности позволила добиться относительно хорошего согласования результатов [5] и [6] с экспериментальными данными, хотя высокая точность моделирования большого числа «бочек» при этом не была достигнута.

В работе [7] проводилось моделирование недорасширенной струи в постановке, основанной на данных экспериментов [8]. Использовался российский программный пакет VP2/3, включающий реализацию метода расщепления по физическим процессам в рамках обобщенной процедуры коррекции давления. Было получено очень хорошее соответствие поперечных профилей экспериментальным результатам [8], подробно исследована картина течения, в том числе особенности турбулентных зон. Моделирование большого числа «бочек» не ставилось целью в указанной работе.

В настоящей работе для моделирования ударно-волновых структур, возникающих в недорасширенной сверхзвуковой струе, применяется численный алгоритм, основанный на регуляризованных (или квазигазодинамических (КГД)) уравнениях [9–12]. Целью работы является проверка возможности применения КГД-алгоритма к данному классу задач, поскольку КГД-метод успешно использовался для расчета недорасширенных струй (включая неравновесные эффекты) и ранее (см., например, [13]). При этом проблема получения большого числа «бочек» не акцентировалась. Кроме того, в КГДмодели имеется встроенная модель турбулентности, роль которой в задачах расчета струй требует исследования. Примеры использования КГД-алгоритма для расчета турбулентных течений можно найти в работах [10, 12–17]. В работе [18] КГД-модель впервые была обобщена на случай течения многокомпонентного газа с учетом поступательно-колебательной неравновесности. Построенный в [18] численный алгоритм используется для расчета сверхзвуковых нерасчетных струй умеренно-разреженного газа и анализа их теплового излучения. Получено, что применение КГД-уравнений позволяет точнее отражать тепловые свойства струи. В частности, интенсивность излучения оказывается существенно ниже, чем при расчете на основе системы уравнений Навье – Стокса, поскольку в слое смешения снижаются поступательная, вращательная и колебательная температуры.

Постановка задачи

Задача моделирования струйного течения соответствует одному из вариантов экспериментальной постановки, описанной в работах [1, 2], и рассматривается в трехмерной постановке в декартовых координатах. Газовая струя круглого сечения втекает в область, имеющую форму прямоугольного параллелепипеда (рис. 1), заполненную неподвижным газом при нормальных условиях. Параметры струи выбирались в соответствии с экспериментальной работой [1]. Диаметр струи на входе составлял D = 0,0508 м. Газ считался совершенным, его уравнение состояния связывает давление, плотность и температуру следующим образом: $p = \rho RT$. Параметры соответствуют параметрам воздуха: постоянная адиабаты — $\gamma = 1,4$, газовая постоянная — R = 287 Дж/(кг⁻К), число Прандтля — $\Pr = 0,737$.

Параметры струй в экспериментах [1, 2] определяются величинами: числом Маха на срезе сопла Ма (определяется формой сопла); параметром β , который связан с идеализированным числом Маха полностью расширенной струи (т.е. струи на расчетном режиме, когда давление на срезе сопла равно атмосферному) Ма_j зависимостью $\beta = ((Ma_j)^2 - 1)^{1/2}$. В настоящей работе рассматривается течение с Ma = 2, $\beta = 2$ (при этом Ma_j = 2,236). Для моделирования требуется знать не только Ma, но также плотность и давление на срезе сопла. Вычислим эти величины следующим образом.

Будем считать, что в невозмущенной области плотность, давление и температура определяются нормальными условиями атмосферы: $\rho_1 = 1,20433 \text{ кг/м}^3$, $p_1 = 101325 \text{ Па}$, $T_1 = 293,15 \text{ K}$. Рассматривая струю на расчетном режиме и принимая, что при этом на срезе сопла Ma = Ma_j и $p = p_1$, вычислим давление торможения на основе изоэнтропической формулы [19] (см. страницу 108). Поскольку в работах [1, 2] не использовался

Рис. 1. Схема расчетной области.

подогрев струй, будем полагать, что температура торможения равна T_1 . Зная параметры торможения и число Маха Ма на срезе сопла, по изоэнтропическим формулам [19] определим на нем давление ($p_0 = 146495$ Па) и температуру ($T_0 = 162,861$ К). Через уравнение состояния найдем плотность на срезе сопла — $\rho_0 = 3,13418$ кг/м³. Скорость звука при этом составляет $c_0 = (\gamma R T_0)^{1/2} = 255,808$ м/с. Таким образом, степень нерасчетности струи $p_0/p_1 = 1,46$.

Математическая модель

Моделирование сверхзвукового струйного течения вязкого газа проводилось на основе системы квазигазодинамических уравнений для совершенного политропного газа, построенной в работах [9–11]. В основе КГД-регуляризации лежит тот факт, что массовая плотность потока \mathbf{j}_m отличается от импульса единицы объема газа $\rho \mathbf{u}$, что приводит к появлению малых дополнительных диссипативных слагаемых в каждом из уравнений системы. Эти регуляризирующие слагаемые имеют физический характер и улучшают свойства численной устойчивости явных разностных алгоритмов, в которых пространственные производные аппроксимируются центральными разностями.

В декартовых координатах в отсутствии внешних сил и источников тепла КГДсистема записывается в виде:

$$\frac{\partial}{\partial t}\rho + \nabla_i j_m^i = 0, \tag{1}$$

$$\frac{\partial}{\partial t}\rho u^{j} + \nabla_{i} \left(j_{m}^{i} u^{j} \right) + \nabla^{j} p = \nabla_{i} \Pi^{ij}, \qquad (2)$$

$$\frac{\partial}{\partial t}E + \nabla_i \left(j_m^i H\right) + \nabla_i q^i = \nabla_i \left(\Pi^{ij} u_j\right),\tag{3}$$

где u_i — компоненты макроскопической скорости, $E = \rho u^2/2 + p/(\gamma - 1)$ — полная удельная энергия, $H = (E + p)/\rho$ — полная удельная энтальпия. Выражения для вектора плотности потока массы j_m^i , тензора вязких напряжений Π^{ij} и теплового потока q^i записываются как

$$j_m^i = \rho \left(u^i - w^i \right), \ w^i = \frac{\tau}{\rho} \left(\nabla_j \rho u^i u^j + \nabla^i p \right), \tag{4}$$

$$\Pi^{ij} = \Pi^{ij}_{\rm NS} + \tau u^i \rho \left(u_k \nabla^k u^j + \frac{1}{\rho} \nabla_j p \right) + \tau \delta^{ij} \left(u_k \nabla^k p + \gamma p \nabla^k u_k \right), \tag{5}$$

$$\Pi_{\rm NS}^{ij} = \mu \left(\nabla^i u^j + \nabla^j u^i - \frac{2}{3} \delta^{ij} \nabla^k u_k \right) + \xi \delta^{ij} \nabla^k u_k, \tag{6}$$

$$q^{i} = q_{\rm NS}^{i} - \tau u^{i} \rho \left(u_{j} \nabla^{j} \varepsilon + p u_{j} \nabla^{j} \frac{1}{\rho} \right), \quad q_{\rm NS}^{i} = -\kappa \nabla^{i} T, \tag{7}$$

здесь $\varepsilon = p/(\rho(\gamma - 1))$ — внутренняя энергия единицы массы газа, Π_{NS}^{ij} и q_{NS}^{i} — тензор вязких напряжений и тепловой поток в системе Навье – Стокса, μ , ξ и κ — коэффициенты сдвиговой и объемной вязкости и теплопроводности соответственно. Определим μ через температурную зависимость:

$$\mu = \mu_0 \left(T / T_0 \right)^{\omega},\tag{8}$$

где $\mu_0 = 1,16869 \cdot 10^{-5}$ кг/(м·с) — вязкость газа при температуре на срезе сопла T_0 (значение вязкости получено на основе данных стандартной атмосферы на высоте 4160 м, ГОСТ 4401-81), $\omega = 0,74$ — показатель межмолекулярного взаимодействия. Выразим коэффициент теплопроводности с использованием числа Прандтля Pr:

$$\kappa = \mu R \gamma / (\Pr(\gamma - 1)), \tag{9}$$

коэффициент объемной вязкости положим равным нулю. Число Рейнольдса, вычисленное по начальной вязкости μ_0 , размеру сопла *D*, начальной скорости Ma· c_0 и начальной плотности ρ_0 , составляет Re = 7·10⁶.

Коэффициент *т*, определяющий дополнительную диссипацию в КГД-алгоритме, для вязкого политропного газа имеет порядок характерного времени между столкновениями частиц газа. В проводимых расчетах его величина связывается с шагом пространственной сетки *h*:

$$\tau = \alpha h/c, \tag{10}$$

где c — локальная скорость звука, $\alpha = 0, 6, ..., 1, 0$ — настроечный параметр.

Расчетные сетки и метод численного решения

В расчетной области (см. рис. 1) введем равномерную сетку с кубическими ячейками. Круглое сопло диаметром D размещается на стенке (x = 0) и расположено симметрично относительно осей Y и Z. Размеры расчетной области в направлениях Y и Z одинаковы и равны 7D. Длина расчетной области в направлении X в разных вариантах составляет 21D и 35D. На диаметр сопла в зависимости от размеров сетки приходится 10, 20 и 30 ее ячеек. В работе используются четыре варианта сетки, их характеристики приведены в таблице.

На построенных сетках КГД-уравнения аппроксимируются центральными разностями, аппроксимация имеет второй порядок точности по пространству. Решение начально-краевой задачи для сеточных аналогов КГД-уравнений (1) – (7) с учетом соотношений (8) – (10) находится по явной по времени конечно-разностной схеме, имеющей первый порядок аппроксимации по времени. Шаг по времени вычисляется как $h_t = \beta_{\rm C} h/c_0$, где $\beta_{\rm C} = 0,01,\ldots,0,02$ — число Куранта.

В начальный момент параметры среза сопла ρ_0 , p_0 , T_0 , и горизонтальная скорость Ма· c_0 задаются в горизонтальном цилиндре с основанием, совпадающим с соплом на стенке (x = 0) и занимающим всю длину расчетной области. Вне цилиндра задаются параметры невозмущенного газа (нормальные условия при ρ_1 , p_1 , T_1 и нулевой скорости). В процессе расчета по явной схеме на срезе сопла при x = 0 параметры газа поддерживаются постоянными, вне сопла на стенке (x = 0) поддерживаются постоянными

Таблица

Сетка	Длина области	Число ячеек на диаметр сопла (cells per diameter, CPD)	Шаг сетки <i>h</i> , м	Число узлов сетки
1	21D	10	0,005	1088640
2	21D	20	0,0025	8468880
3	21D	30	0,0017	28314720
4	35D	10	0,005	1814400

Варианты расчетных сеток

параметры невозмущенного газа. На остальных границах области поддерживается равенство нулю всех нормальных производных. Хотя такие условия соответствуют полностью сверхзвуковому течению, при расчете недорасширенной сверхзвуковой струи, втекающей в область неподвижного газа, они также работают хорошо, несмотря на наличие дозвуковых областей вне струи.

Расчеты проводились с помощью суперкомпьютера К-100, установленного в Центре коллективного пользования Института прикладной математики им. М.В. Келдыша РАН [20]. При этом использовалось распараллеливание вычислений, основанное на декомпозиции расчетной области с применением стандарта передачи сообщений MPI. В зависимости от варианта расчета, машинное время составляло от 30 мин до 20 часов при использовании от 96 до 128 процессорных ядер.

Отметим, что применение описанного численного алгоритма для КГД-уравнений в задаче моделирования распада вихря Тейлора – Грина [14] позволило получить хорошее согласование профиля диссипации кинетической энергии с эталонными данными, а также соответствие энергетического спектра колмогоровскому закону убывания энергии с ростом частоты в инерционном интервале. При этом шаг пространственной сетки составлял от 0,0005 до 0,00025 м, настроечный параметр α менялся от 0,1 до 1. Применение этого же алгоритма для КГД-уравнений к моделированию турбулентного течения Куэтта в плоском канале [15] показало хорошее согласование величин турбулентных пульсаций трех компонент скорости потока с соответствующими экспериментальными и расчетными данными, известными из литературных источников, при этом шаг сетки составлял 0,001 м, параметр $\alpha = 0,1$. В работе [21] КГД-алгоритм, реализованный в программном комплексе OpenFOAM, применялся для моделирования взаимодействия сильно недорасширенных газовых струй с преградами. Было получено хорошее соответствие расчетных и экспериментальных данных при моделировании сложных ударно-волновых структур, возникающих при таком взаимодействии.

Эволюция струйного течения и выбор времени осреднения

Анализ развития струйного течения во времени, проведенный с помощью моделирования при $\alpha = 0,8$ и $\alpha = 1,0$ на различных расчетных сетках при длине области 35*D*, демонстрирует качественно сходные результаты. На рис. 2 показаны рассчитанные мгновенные уровни давления в сечении z = 0 для моментов времени 2, 4, 30, 50 мс, а также осредненные от 30 до 50 мс уровни давления, полученные на сетке 4 при $\alpha = 0,8$.

Эволюция струйного течения происходит следующим образом. От начального момента времени до 2 мс формируется периодическая структура в ближней зоне струи ($x < 20D \sim 1$ м, 6-7 «бочек»). После этого периодическая структура в этой зоне меняется мало.

В период времени от 4 до 30 мс происходит переходный процесс формирования нестационарного течения в области $20D < x < 35D \approx 1,75$ м, а от 30 до 50 мс струйное течение в этой области становится выраженно турбулентным. Общая структура течения в период от 30 до 50 мс сохраняется, при этом течение становится несимметричным. В области x < 20D продолжают существовать 6-7 относительно устойчивых «бочек», вокруг которых присутствуют нестационарные вихревые структуры. В области 20D < x < 35D располагается в целом нестационарная часть течения, но несколько «бочек» (хотя и слабо выраженных) существует и в этой области, что видно на осредненном от 30 до 50 мс поле давления (рис. 2e). Общий характер струи является турбулентным,

Рис. 2. Мгновенные (a-d) и осредненные от 30 до 50 мс (e) уровни давления в сечении z = 0.

что соответствует числу Рейнольдса, вычисленному по начальным параметрам струи. Характер осредненных периодических структур при этом соответствует данным эксперимента [1, 2] для рассматриваемого варианта струи. Осреднение данных моделирования перед сравнением с результатами эксперимента оправдано, поскольку, как указывают авторы [1], экспериментальные данные также осредняются по времени, и пульсации при этом не исследуются.

Для иллюстрации трехмерного несимметричного характера нестационарного струйного течения на рис. 3 приведены уровни давления, нанесенные на изоповерхности градиента давления в момент времени 44 мс в неосредненном и осредненном виде, полученные при моделировании на сетке 4 при $\alpha = 0.8$.

На рис. 4 сплошной линией показан спектр удельной кинетической энергии нестационарного участка струи, соответствующего рис. 3a, при 44 мс (сетка 4, $\alpha = 0,8$). Спектр вычислялся в кубической области, близкой к выходной границе (1,4 < x < 1,67, -0,13 < y < 0,13, -0,13 < z < 0,13 м), по неосредненному полю течения. Методика вычисления энергетического спектра основана на дискретном преобразовании Фурье и детально описывалась в работе [16]. Также на рис. 4 изображена штриховая прямая с угловым коэффициентом -5/3, соответствующим колмогоровскому закону убывания энергии турбулентных пульсаций с увеличением их частоты. Видно, что применяемый в настоящей работе численный метод и выбранные размеры расчетных ячеек позволяют моделировать спектр пульсаций на части инерционного интервала, как и в случаях применения

Рис. 3. Мгновенные (*a*) и осредненные от 30 до 44 мс (*b*) уровни давления, нанесенные на изоповерхности модуля градиента давления в момент времени 44 мс.

КГД-алгоритма к задаче моделирования распада вихря Тейлора–Грина [14] и задаче о распаде однородной изотропной турбулентности [16].

Анализ эволюции струйного течения показывает, что для исследования ближней зоны течения достаточно выполнить моделирование при длине области 21D (сетки 1, 2 и 3) и провести осреднение от 2 до 4 мс. Для исследования особенностей удаленной от сопла нестационарной области струи требуется использовать более длинную расчетную область и большее время расчета, проводя осреднение, например, от 30 до 50 мс. Однако при этом становится затруднительным использование подробных сеток (от 20 и более ячеек на D), поскольку машинное время расчета сильно увеличивается.

Отметим, что частица газа при скорости звука за время 4 мс успела бы пройти около 1 м, что приблизительно равно длине расчетной области 21*D*. При исследовании нестационарных областей в струйном течении в ходе моделирования желательно не применять условия симметрии, поскольку такое течение имеет существенно трехмерный несимметричный характер. Кроме того, при моделировании несимметричных структур предпочтительно использование равномерной сетки с кубическими ячейками.

Сходимость результатов при измельчении сетки

На рис. 5 приведены осевые профили осредненного давления, нормированного на атмосферное давление $p_{\rm atm}$. Символы 1 соответствуют экспериментальным результатам работы [1], кривые 2–4 представляют результаты моделирования на основе КГД-алгоритма на сетках 1 (кривая 2), 2 (кривая 3) и 3 (кривая 4). Длина области составляет 21D, настроечный параметр $\alpha = 0.6$, осреднение проводилось от 2 до 4 мс. Слева пред-

ставлена полная область расчета, справа фрагмент, содержащий первые три

Рис. 4. Энергетический спектр удельной кинетической энергии турбулентной зоны струи при 44 мс (сплошная кривая) и прямая с угловым коэффициентом -5/3, соответствующим колмогоровскому закону убывания энергии турбулентных пульсаций (штриховая линия).

Рис. 5. Осевые профили осредненного нормированного давления. *I* — данные эксперимента [1], 2–4 — результаты моделирования на основе КГД-алгоритма при CPD = 10 (2), 20 (3), 30 (4).

«бочки». Видно, что при измельчении сетки результаты моделирования становятся заметно ближе к экспериментальным данным. Недостаточная (по сравнению с экспериментальными значениями) амплитуда колебаний профиля давления в расчете обусловлена, вероятно, диссипативностью используемого варианта КГД-алгоритма, которая обеспечивает устойчивость расчета при моделировании течения сложной структуры при наличии сверх- и дозвуковых областей, а также зон турбулентности. Тем не менее, результаты, полученные на сетках 2 и 3, показывают в целом достаточно хорошее соответствие с экспериментальными данными, в частности, на сетке 3 удается разрешить ступенчатый характер профиля первых двух «бочек». Возможно, при использовании более подробных сеток на основе КГД-алгоритма можно получить более точное соответствие значений максимумов экспериментальным данным. При x > 10D частота и амплитуда периодических структур отстают от экспериментальным значения, но при этом данные более подробной сетки в целом ближе к экспериментальным значениям, чем полученные на более грубых.

На рис. 6 приведены осевые профили для осредненного числа Маха, при этом параметры расчетов и обозначения здесь такие же, как на рис. 5. Анализ рисунка также показывает сходимость результатов к экспериментальным данным при измельчении сетки и хорошее количественное соответствие эксперименту при x < 10D, в том числе наличие ступенек в профиле числа Маха в первой и второй «бочках». Однако для числа Маха меньшее значение амплитуды колебаний профиля по сравнению с данными эксперимента заметнее, чем для давления, и крутые фронты экспериментального профиля несколько размазаны.

Обозначения см. на рис. 5.

Рис. 7. Осевые профили осредненного нормированного давления. 1 —данные эксперимента [1], 2–4 — результаты расчетов при α = 1 (2), 0,8 (3), 0,6 (4).

Расхождение по частоте с экспериментальными данными наблюдается в удаленной от сопла области: «бочки» по результатам расчета расположены несколько дальше от сопла по сравнению с данными эксперимента. Авторы работы [1] утверждают, что при проведении лабораторных экспериментов в расширяющейся части сверхзвукового сопла происходит нарастание пограничного слоя. Может быть, это ведет к уменьшению эффективного диаметра сопла, так что масштаб координаты x/D определен не совсем точно. С другой стороны, в расчете эффективный диаметр сопла также определен не совсем точно из-за приблизительной аппроксимации сопла на расчетной сетке с квадратными ячейками, особенно при использовании более грубых сеток. Поэтому возможно несовпадение масштабов оси абсцисс при построении экспериментальных и расчетных осевых профилей, и в таком случае сравнение расположения «бочек» на удалении от сопла не очень показательно.

Зависимость результатов от настроечного параметра КГД-алгоритма

На рис. 7 приведены осевые профили осредненного давления, нормированного на атмосферное давление $p_{\rm atm}$. Символы *1* соответствуют экспериментальным результатам работы [1], кривые 2–4 показывают результаты моделирования при различных значениях настроечного параметра КГД-алгоритма: $\alpha = 1,0$ (кривая 2), $\alpha = 0,8$ (кривая 3) и $\alpha = 0,6$ (кривая 4). Длина области при этом составляет 21D, используется сетка 3, осреднение проводилось от 2 до 4 мс. Слева представлена полная область расчета, справа — фрагмент, содержащий первые три «бочки». Рисунок 7 показывает, что при уменьшении α результаты моделирования становятся несколько ближе к экспериментальным данным, особенно при x > 10D, хотя в этой области все результаты расчетов отстают от экспериментальных по частоте и амплитуде. При x < 10D результаты расчетов мало зависят от α и весьма близки к экспериментальным данным.

Заключение

Моделирование сверхзвуковой недорасширенной затопленной струи, проведенное на основе КГД-алгоритма в трехмерной постановке, позволяет определить структуру периодических ударно-волновых областей («бочек»), а также общую структуру течения и спектр турбулентных пульсаций нестационарной зоны течения на части инерционного интервала. При использовании расчетных сеток, содержащих порядка 30 ячеек на диаметр струи, получено достаточно хорошее количественное совпадение с экспериментальными данными в ближней зоне струи (первые 3–4 «бочки»). Предпочтительным является

использование более подробных сеток (имеет место сходимость результатов к экспериментальным значениям при измельчении сетки) и меньших значений настроечного параметра КГД-алгоритма ($\alpha = 0,6$ по сравнению с 1,0). Однако даже при использовании относительно грубых сеток (10 ячеек на диаметр струи) на достаточно длинной расчетной области обнаруживается формирование около десяти «бочек», как и в эксперименте.

Авторы признательны М.В. Крапошину и А.С. Епихину за обсуждение исследуемой задачи.

Список литературы

- 1. Seiner J.M., Norum T.D. Experiments of shock associated noise on supersonic jets // AIAA Paper. 1979. No. 79-1526.
- Norum T.D., Seiner J.M. Measurements of mean static pressure and far-field acoustics of shock-containing supersonic jets // NASA Technical Memorandum 84521. 1982. 204 p.
- 3. Leon O., Donjat D., Olchewsky F., Desse J., Nicolas F., Champagnat F. Three-dimensional density field of a screeching under-expanded jet in helical mode using multi-view digital holographic interferometry // J. of Fluid Mech. 2022. Vol. 947. P. A36-1–A36-38.
- McGuirk J., Feng T. The near-field aerodynamic characteristics of hot high-speed jets // J. of Fluid Mech. 2021. Vol. 915. P. A120-1– A120-31.
- 5. Глушко Г.С., Иванов И.Э., Крюков И.А. Моделирование турбулентности в сверхзвуковых струйных течениях // Физико-химическая кинетика в газовой динамике. 2010. Т. 9. С. 142-1–142-8.
- 6. Кудимов Н.Ф., Сафронов А.В., Третьякова О.Н. Прикладные задачи газодинамики и теплообмена в энергетических установках ракетной техники. М.: Изд-во МАИ. 2014. 168 с.
- 7. Исаев С.А., Липницкий Ю.М., Баранов П.А., Панасенко А.В., Усачов А.Е. Моделирование турбулентной сверхзвуковой недорасширенной струи, истекающей в затопленное пространство, с помощью модели переноса сдвиговых напряжений // Инж.-физ. журнал. 2012. Т. 85, № 6. С. 1253–1267.
- 8. Запрягаев В.И., Кавун И.Н., Киселев Н.П. Структура течения на начальном участке сверхзвуковой струи, истекающей из сопла с шевронами // Прикл. механика и технич. физика. 2010. Т. 51, № 2. С. 71–80.
- 9. Chetverushkin B.N. Kinetic schemes and quasi-gas dynamic system of equations. Barselona: CIMNE, 2008. 298 p.
- 10. Elizarova T.G. Quasi-qas dynamic equations. Dordrecht: Springer, 2009. 300 p.
- 11. Шеретов Ю.В. Регуляризованные уравнения гидродинамики. Тверь: Тверской гос. ун-т, 2016. 222 с.
- 12. Елизарова Т.Г., Широков И.А. Регуляризованные уравнения и примеры их использования при моделировании газодинамических течений. М.: МАКС Пресс, 2017. 136 с.
- Mate B., Graur I., Elizarova T., Chirokov I., Tejeda G., Fernandez J., Montero S. Experimental and numerical investigation of an axisymmetric supersonic jet // J. of Fluid Mech. 2001. Vol. 426. P. 177–197.
- 14. Shirokov I.A., Elizarova T.G. Simulation of laminar-turbulent transition in compressible Taylor–Green flow basing on quasi-gas dynamic equations // J. of Turbulence. 2014. Vol. 15, Iss. 10. P. 707–730.
- 15. Широков И.А., Елизарова Т.Г. Применение квазигазодинамических уравнений к моделированию пристеночных турбулентных течений // Тр. ф-та ВМК МГУ им. М.В. Ломоносова. Прикладная математика и информатика / Под ред. В.И. Дмитриева. М.: МАКС Пресс, 2016. № 51. С. 52–80.
- 16. Елизарова Т.Г., Широков И.А. Тестирование КГД–алгоритма на примере задачи о распаде однородной изотропной турбулентности // Препринты ИПМ им. М.В. Келдыша. 2013. № 35. 19 с.
- 17. Широков И.А., Елизарова Т.Г. Моделирование нестационарного дозвукового обтекания осесимметричного тела с турбулизатором // Теплофизика и аэромеханика. 2022. Т. 29, № 1. С. 37–44.
- 18. Молчанов А. М., Попов В. Э. Расчет газовой динамики и излучения высотных струй // Физ.-хим. кинетика в газовой динамике. 2018. Т. 19, вып. 2. С. 753-1–753-20.
- 19. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1978. 736 с.
- 20. K-100 System, Keldysh Institute of Applied Mathematics RAS, Moscow. https://www.kiam.ru/MVS/resourses/k100.html (дата обращения 31.05.2024)
- 21. Епихин А.С., Елизарова Т.Г. Численное моделирование газодинамики процесса взаимодействия недорасширенных струй с наклонной преградой // Теплофизика и аэромеханика. 2021. Т. 28, № 4. С. 509–517.

Статья поступила в редакцию 30 июня 2023 г.,

после доработки — 9 августа 2023 г.,

принята к публикации 21 ноября 2023 г.