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Abstract. Approximate analytical expressions for mass flow-rate in long isothermal channels are constructed on the basis of
quasigasdynamic equations with Maxwell velocity-slip boundary conditions. These expressions correspond to experimental
data for Knudsen numbersKn< 0.5 and account for an effect of Knudsen minimum. Special correctionare proposed to obtain
a unified formula for mass flow-rate, valid up to free-molecular regime.
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INTRODUCTION

For Knudsen numbersKn < 0.1 Navier-Stokes equation system with Maxwell–type boundary conditions account
for velocity slip and temperature jump, are in reasonably agreement with the experimental data. For increasingKn
numbers Navier-Stokes results begin to diverge from the experiments. In particular, calculated values of mass flow-
rate in microchannels exceed measured results and don’t account for the so-called Knudsen minimum – an effect of
minimum of a normalized mass flow-rate forKn ∼ 1 (e.g.[1]). Another example of disagreement is the anomalous
decreasing of the skin friction drag for a microshpere with increasing Knudsen numbers.

There are two ways to overcome these problems: to improve thegoverning gasdynamic equations or to modify the
boundary conditions. Promising results were obtained by modifying the slip boundary conditions, e.g. [2], [3], [4].

In this work we present the possibilities of quasigasdynamic (QGD) equations with Maxwell boundary conditions
for simulation of rarefied gas flows.

QGD EQUATIONS AND POISEUILLE FLOW

In the usual notations the QGD equations have the form (e.g. [5])
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with a mass flux vector~jm, a shear-stress tensorΠ, and a heat flux vector~q given by
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Here
τ = η/(pSc), (7)

whereScis Schmidt’s number. System (1) – (6) must be completed by thestate equations for the perfect gas

p = ρRT, ε = p/(ρ(γ −1)),

and by the expressions for viscosityη and heat conductivityκ coefficients
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For τ = 0 the QGD system coincides with the Navier-Stokes one. For stationary flows, the dissipative terms (terms in
τ) in QGD equations have the asymptotic order ofO(τ2) for τ → 0. For perfect gas the entropy production for QGD
system is the entropy production for Navier-Stokes system completed by the additional terms inτ, that are the squared
left-hand sides of of classical stationary Euler equationswith positive coefficients:

X = κ
(~∇T

T

)2
+

(ΠNS : ΠNS)

2ηT
+

pτ
ρ2T

[

div(ρ~u)
]2

+
τ

ρT

[

ρ(~u·~∇)~u+~∇p
]2

+
τ

ρεT

[

ρ(~u·~∇)ε + pdiv~u
]2

. (8)

To construct an analytical expression for the mass flow-ratein a long isothermal channel we will follow the method
of [6], where a similar expression was obtained using the quasihydrodynamic (QHD) equations system. For the
problem under consideration the QGD and QHD systems coincide. Let us analyze a gas flow in a plane channel
of the lengthL in x–direction and widthH in y–direction. The pressures at an entrance and exit of a channel arep1
andp2, wherep1 > p2. According to [7] (chap.2, sec.18, problem 6) suppose that apressure gradient along a channel
is small, and along a small distancedxgas densityρ may be regarded as a constant. Let us look for the solution of the
system (1)–(6) in the form

ux = u(y), uy = 0, p = p(x), T = T0. (9)

In this case the Navier-Stokes, QGD, and QHD systems reduce to the same equation
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Using Maxwell velocity-slip boundary conditions [8]
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one obtains the modified Poiseuille formula (e.g. [1])
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Hereσ is the coefficient of accommodation for velocity, andλ is the mean free-path
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η
p

√
RT, (11)

whereA =
√

π/2 for Chapman formula [8], orA = 2(7−2ω)(5−2ω)/(15
√

2π) for Bird formula [9].

Mass flow-rate calculation

For the Navier-Stokes system the mass flux vector isjmx = ρux. According to [7] we replaceρ = p/RT0 and the
calculate mass flow-rate through the section of the channel is
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For both QGD and QHD modelsjmx = ρ(ux−wx), where
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This additional mass flux is connected with the self-diffusion, and is proportional to the pressure gradient. So, the mass
flow-rate in a channel section becomes
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The last term in (13) is obtained by replacingη by λ using (11).
The first term in (13) describes the mass flow-rate for non-slip Poiseuille flow, the second one accounts for the

flow-rate increasing because of velocity-slip conditions,the third one explains the flow-rate increasing because of self-
diffusion. It does not depend fromσ . The importance of self-diffusion for rarefied flows is mentioned in, e.g. [1] and
[10]. This last term has the order ofO(τ ·η) or O(Kn2), whereKn = λ/H. For stationary flows this fact corresponds
with the known difference between QGD and Navier-Stokes models.

The QGD approach allows to obtain the analytical expressionof the form (13) for tube, and for tube of annular
section channels, and for plane channels with different accommodation coefficientsσ for upper and down walls.

According to [1] mass flow-rate in a plane channel for free-molecular flow is
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The normalized flow-rate (13) becomes then

Qxy =
J

Jxy
0

=
3
√

πA

8
√

2

[Kn−1

6
+

2−σ
σ

+
2

A2Sc
Kn

]

. (15)

The minimum ofQxy takes place for

Knm =
A
2

√
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3

.

This value does not depend fromσ . ForSc= 1, A =
√

π/2, Knm = 0.36.
Basing on the BGK model for hard-sphere molecules (ω = 0.5) the mass flow-rate in plane, tube, and tube of annular

section channels have been calculated in [10], [11], [12] [13], [14]. These results have been presented in form of tables
and figures. For small Knudsen numbers (Kn → 0) the corresponding approximative formula for a plane channel is
presented in [10] by

Qcer =
Kn−1

6
+σ +(2σ2−1)Kn. (16)

Other data mass-flow rate data been collected in [15]. Forσ = 1 equations (15) and (16) differ only by the numerical
factor 2/(A2Sc)∼ 1. Note also, that in (15) the last term does’not depend fromσ . As will be shown below, expressions
(13) and (15) correspond to kinetic results up toKn∼ 0.5.

Corrections to account for mass flow-rate in rarefied flows

Additional terms in the QGD system, which are proportional to a small parameterτ, are related with the additional
smoothing, or averaging in time in the definition of the gasdynamic parameters [5, 6]. A value ofτ with the accuracy
of the coefficient∼ 1 is equal to the collisional mean free-path time. For increasingKn, τ also increases. For rarefied
flows with λ ≥ H, or Kn = λ/H ≥ 1, it is reasonable to limit the averaging time and to connectit additionally with
the characteristic dimentions of the problem under consideration. To realize it we introduce a correction forτ-value
(7) in the form

τ =
η

pSc(1+Kn)
. (17)



ForKn→ 0 relation (17) reduces to (7) and does not disturb the previous results. Usingλ as (11) one get forKn>> 1
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So, for a rarefied flow,τ ∼ H/
√

RT has the order of a mean free-path time between collisions with the boundaries of
the volume under consideration.

In order to employ the correctedτ formula, it is useful to introduce in (17) a numerical factorα ∼ 1, rewritingτ

τ = η/(pSc(1+αKn)),

the mass flow-rate (13) taking the form
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The normalized flow-rate (analog to (15)) becomes then:
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From this relation a minimum of the mass flow rate is reached for
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For α = 1, Sc= 1, A =
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π/2 (Chapman formula), andKnm = 0.56.
The condition of existence of Knudsen minimumKnm > 0 imposes the limit for coefficientα:
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A
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FIGURE 1. Qxy (left) andQrz (right) for σ = 1, A =
√

π/2, Sc= 1. Comparison with BGK results from [10]. Line "Cer" stands
for BGK results. Line 1 stands for Navier-Stokes solution with velocity slip condition, line 2 — QGD model without correction (
α = 0), line 3 – QGD forα = 1. Line 4 (right) QGD forα = 2.

For Kn >> 1 the mass flow-rate is equal to the flow-rate in free molecularflow, obtained by a simple kinetical
model in, e.g. [1], and (20) looks as
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From this relation one can determineα. Forσ = 1
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For A =
√

π/2, Sc= 1, one getsα = 1.82. The BGK solution from [10] givesQxy ∼ lnKn for Kn→ ∞.
In a similar way we obtained the normalized mass flow-rate fortube flow of radiusH
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where mass flow-rate for free molecular flow [1] is
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For the tube flow the exact BGK solution from [10] in the limitKn→ ∞ gives also the constant asymptotic solution
Qxy ∼ const.

The normalized flow-rate has a minimum for Knudsen number
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In the figures 1 the calculated mass flow-rate for a plane and tube channels in forms (20) and (22) are shown in
comparison with BGK calculations [10] as a function ofKn. In our calculationsσ = 1, A =

√

π/2, Sc= 1. On both
figures line 1 corresponds to Navier-Stokes calculations with Maxwell velocity-slip boundary conditions; line without
markers - for Navier-Stokes non-slip calculations.

From both pictures it is clear, that up toKn∼ 0.1 Navier-Stokes solution with velocity-slip condition corresponds
well with BGK results. Up toKn ∼ 0.5 the QGD solution accounts well for BGK data, and then rapidly tends to
infinity. The QGD formula with correction corresponds rather well with the BGK solution for Knudsen numbers up to
Kn∼ 100 for a plane channel, and up to free-molecular regime for atube channel. Here for a plane channelα = 1, for
a tube channelα = 2.

Comparison with the experiment

In figures 2 mass flow-rateJxy for the plane channel is comapared with the experimental data from [16], where data
are presented in nondimentional form, normalized for Poiseuille flow-rate

JP = H3p/(12η0RT0)dp/dx

and presented as

ST = 1+6
2−σ

σ
Kn+12A2Kn2. (23)

In [16] λ is calculated for hard sphere molecules. CoefficientA2 is supposed to be a function fromσ and Kn,
A2 = A2(σ ,Kn). The mass flow-rate (19) normalized for Poiseuille flowJP has the form

S=
Jxy

JP
= 1+6

2−σ
σ

Kn+
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A2Sc(1+αKn)
Kn2, (24)

which differs from (23) in the form of coefficientA2.
In figures 2 the calculated mass flow-rates for a plane channel(24) are shown in comparison with experimental

results [16]. On both figures line 1 corresponds to Navier-Stokes calculations with Maxwell velocity-slip boundary
conditions. In our calculationsσ = 1, A = 16/5

√
2π. On the left figure QGD results without correction are presented

for Sc= 0.75 andSc= 0.88. Up toKn∼ 0.5 the numerical results correspond to the experimental onesfor the right
Scnumber. On the left figure numerical results with correctionare presented forSc= 0.75. It is seen, that adjustingα
it is possible to fit experimental and numerical results properly.

In [4], a special velocity-slip boundary condition, non-linear inKn, was used to obtain a mass flow-rate. The
resulting expressions are very similar to the ones obtainedhere with theτ-correction. The good agreement of results
[4] with the experiment indirectly confirm the validity of expressions (19), (20), (22) and (24).



FIGURE 2. Comparison of normalized mass-fluxSwith the experimental data for nitrogen (triangles) and helium (points) from
[16]. Line 1 corresponds to Navier-Stokes calculations with Maxwell velocity-slip boundary conditions. Left — QGD calculations
without correction (α = 0). Line 2 stands forSc= 0.88, line 3 – forSc= 0.75. Right — QGD with correction,Sc= 0.75. Line 2
stands forα = 2, line 3 – forα = 1.

CONCLUSIONS

The results obtained for isothermal microchannel flow demonstrate that the Navier-Stokes model with Maxwell
velocity-slip conditions is valid up toKn∼ 0.1.

The QGD equations allow to construct approximate analytical expressions for the mass flow-rate in long isothermal
microchannels, which correspond to experimental data up toKn ∼ 0.5, and predicts the existence of Knudsen
minimum.

The correction of a relaxation timeτ → τ/(1+ αKn), whereα is a numerical factor of order unity, leads to the
unified approximate mass flow-rate formula for long isothermal channels, valid up to near free-molecular regime.
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