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Abstract. Approximate analytical expressions for mass flow-rate in long isotHesi@enels are constructed on the basis of
quasigasdynamic equations with Maxwell velocity-slip boundary conditibhese expressions correspond to experimental
data for Knudsen numbeka < 0.5 and account for an effect of Knudsen minimum. Special correetieproposed to obtain

a unified formula for mass flow-rate, valid up to free-molecular regime.
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INTRODUCTION

For Knudsen number&n < 0.1 Navier-Stokes equation system with Maxwell-type boupdamditions account
for velocity slip and temperature jump, are in reasonabhgagent with the experimental data. For increas{mg
numbers Navier-Stokes results begin to diverge from themxgents. In particular, calculated values of mass flow-
rate in microchannels exceed measured results and dowtiactor the so-called Knudsen minimum — an effect of
minimum of a normalized mass flow-rate flin ~ 1 (e.g.[1]). Another example of disagreement is the anouowlo
decreasing of the skin friction drag for a microshpere wiktréasing Knudsen numbers.

There are two ways to overcome these problems: to improvgdherning gasdynamic equations or to modify the
boundary conditions. Promising results were obtained bglifyiog the slip boundary conditions, e.g. [2], [3], [4].

In this work we present the possibilities of quasigasdyrai@GD) equations with Maxwell boundary conditions
for simulation of rarefied gas flows.

QGD EQUATIONS AND POISEUILLE FLOW

In the usual notations the QGD equations have the form (&]y. [
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with a mass flux vectofn, a shear-stress tensdr and a heat flux vectat given by
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Here
whereScis Schmidt’'s number. System (1) — (6) must be completed bgtiite equations for the perfect gas

p=pRT,  e=p/(p(y—1)),
and by the expressions for viscosifyand heat conductivitk coefficients
T\® YR
?0> , K=-———1.
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For T = 0 the QGD system coincides with the Navier-Stokes one. Riosiary flows, the dissipative terms (terms in
T) in QGD equations have the asymptotic ordegt?) for T — 0. For perfect gas the entropy production for QGD
system is the entropy production for Navier-Stokes systempteted by the additional termsinthat are the squared
left-hand sides of of classical stationary Euler equatisitis positive coefficients:
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To construct an analytical expression for the mass flowireédong isothermal channel we will follow the method
of [6], where a similar expression was obtained using thesipydrodynamic (QHD) equations system. For the
problem under consideration the QGD and QHD systems candidt us analyze a gas flow in a plane channel
of the lengthL in x—direction and widttH in y—direction. The pressures at an entrance and exit of aneharep;
andpy, wherep; > p2. According to [7] (chap.2, sec.18, problem 6) suppose tipmeasure gradient along a channel
is small, and along a small distandggas densityp may be regarded as a constant. Let us look for the solutiameof t
system (1)—(6) in the form

ux=u(y), u=0 p=pKx), T=To. )
In this case the Navier-Stokes, QGD, and QHD systems redutte tsame equation

dpx)  d?u(y)

Using Maxwell velocity-slip boundary conditions [8]
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one obtains the modified Poiseuille formula (e.g. [1])
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Hereo is the coefficient of accommodation for velocity, ahds the mean free-path
A= A% VRT, (11)

whereA = /1/2 for Chapman formula [8], oh = 2(7 — 2w) (5 — 2w) /(15v/2m) for Bird formula [9].

Mass flow-rate calculation

For the Navier-Stokes system the mass flux vectgmis= puy. According to [7] we replac@ = p/RTp and the
calculate mass flow-rate through the section of the chasnel i
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For both QGD and QHD modelg = p(ux — W), where
_tdp_ n 1dp
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This additional mass flux is connected with the self-diffunsiand is proportional to the pressure gradient. So, the mas
flow-rate in a channel section becomes
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The last term in (13) is obtained by replacindy A using (11).

The first term in (13) describes the mass flow-rate for ngm-Bbiseuille flow, the second one accounts for the
flow-rate increasing because of velocity-slip conditidhs,third one explains the flow-rate increasing becauseff se
diffusion. It does not depend from. The importance of self-diffusion for rarefied flows is mentd in, e.g. [1] and
[10]. This last term has the order 6{t - n) or O(Kn?), whereKn = A /H. For stationary flows this fact corresponds
with the known difference between QGD and Navier-Stokesetsd

The QGD approach allows to obtain the analytical expressfahe form (13) for tube, and for tube of annular
section channels, and for plane channels with differemt@ocodation coefficiente for upper and down walls.

According to [1] mass flow-rate in a plane channel for fredeauolar flow is
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The normalized flow-rate (13) becomes then
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The minimum ofQyy takes place for

A /Sc
Knm= 2\ 3
This value does not depend from ForSc=1,A= /m/2,Kny, = 0.36.
Basing on the BGK model for hard-sphere molecutes{0.5) the mass flow-rate in plane, tube, and tube of annular
section channels have been calculated in [10], [11], [12],[[L4]. These results have been presented in form of tables
and figures. For small Knudsen numbes(— 0) the corresponding approximative formula for a plane ocleais

presented in [10] by
-1

Qeer = ——+0+ (202 — 1)Kn. (16)

Other data mass-flow rate data been collected in [15]dFerl equations (15) and (16) differ only by the numerical
factor 2/(A°Sg ~ 1. Note also, that in (15) the last term does’not depend fors will be shown below, expressions
(13) and (15) correspond to kinetic results ugKio~ 0.5.

Corrections to account for mass flow-rate in rarefied flows

Additional terms in the QGD system, which are proportioned small parameter, are related with the additional
smoothing, or averaging in time in the definition of the gasiyic parameters [5, 6]. A value ofwith the accuracy
of the coefficient~ 1 is equal to the collisional mean free-path time. For insirgg@Kn, T also increases. For rarefied
flows withA > H, orKn=A/H > 1, itis reasonable to limit the averaging time and to conitesdditionally with
the characteristic dimentions of the problem under comatd®. To realize it we introduce a correction fowalue
(7) in the form n
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ForKn — 0O relation (17) reduces to (7) and does not disturb the pusviesults. Using as (11) one get fokn>> 1

n n H
T = ~ = .
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So, for a rarefied flowf ~ H/+/RT has the order of a mean free-path time between collisioristwé boundaries of
the volume under consideration.

In order to employ the correctadformula, it is useful to introduce in (17) a numerical factor 1, rewritingt

(18)

r=1/(pSe1+akKn)),

the mass flow-rate (13) taking the form
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The normalized flow-rate (analog to (15)) becomes then:
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From this relation a minimum of the mass flow rate is reached fo
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Fora =1,Sc=1,A=,/m/2 (Chapman formula), arkin,, = 0.56.
The condition of existence of Knudsen minimin,, > 0 imposes the limit for coefficieru:
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FIGURE 1. Qyy (left) andQy (right) for o = 1, A= /m/2, Sc= 1. Comparison with BGK results from [10]. Line "Cer" stands
for BGK results. Line 1 stands for Navier-Stokes solution with velocity slipdition, line 2 — QGD model without correction (
o =0), line 3-QGD fora = 1. Line 4 (right) QGD fora = 2.

For Kn >> 1 the mass flow-rate is equal to the flow-rate in free molecildav, obtained by a simple kinetical
model in, e.g. [1], and (20) looks as
J 3/mA2-0 2
= o = — =1
Qy P8 el o Tam SJ
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From this relation one can determineForo = 1
q— 6./
ASc8v2—3AyT)

ForA=,/m/2,Sc=1, one getsr = 1.82. The BGK solution from [10] give®yy ~ InKn for Kn — o,
In a similar way we obtained the normalized mass flow-ratéube flow of radiutd

J 3/mAKnlt 2-¢g 2 Kn
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where mass flow-rate for free molecular flow [1] is
gz 4H? [2mdp
" 3 VRLdz
For the tube flow the exact BGK solution from [10] in the lirdih — o gives also the constant asymptotic solution

Quy ~ const
The normalized flow-rate has a minimum for Knudsen number

A /Sc A /Sc -1
k=25 (1-a5/3)

In the figures 1 the calculated mass flow-rate for a plane apel ¢thannels in forms (20) and (22) are shown in
comparison with BGK calculations [10] as a functionkah. In our calculationss = 1, A= ,/m/2, Sc= 1. On both
figures line 1 corresponds to Navier-Stokes calculationis Miaxwell velocity-slip boundary conditions; line withbu
markers - for Navier-Stokes non-slip calculations.

From both pictures it is clear, that up ikn ~ 0.1 Navier-Stokes solution with velocity-slip condition cesponds
well with BGK results. Up toKn ~ 0.5 the QGD solution accounts well for BGK data, and then rapidhds to
infinity. The QGD formula with correction corresponds rathell with the BGK solution for Knudsen numbers up to
Kn ~ 100 for a plane channel, and up to free-molecular regime foba channel. Here for a plane chanaek 1, for
a tube channalr = 2.

Comparison with the experiment

In figures 2 mass flow-raty for the plane channel is comapared with the experimental fdatn [16], where data
are presented in nondimentional form, normalized for Roltgeflow-rate

Jp = Hp/(12n0RTo)d p/dx
and presented as
Sr— 1+62?TGKn+ 127K 2. (23)

In [16] A is calculated for hard sphere molecules. Coefficiéntis supposed to be a function from and Kn,
Ay = Ay(0,Kn). The mass flow-rate (19) normalized for Poiseuille flimhas the form
Jyy 2—0 12 2
S= I =1+6 5 KnJrAZSc(lJraKn)Kn ,
which differs from (23) in the form of coefficien;.

In figures 2 the calculated mass flow-rates for a plane chg@dglare shown in comparison with experimental
results [16]. On both figures line 1 corresponds to Naviek&s calculations with Maxwell velocity-slip boundary
conditions. In our calculations = 1, A = 16/5\/27. On the left figure QGD results without correction are présen
for Sc= 0.75 andSc= 0.88. Up toKn ~ 0.5 the numerical results correspond to the experimental fumghe right
Scnumber. On the left figure numerical results with correcaom presented fddc= 0.75. It is seen, that adjustirg
it is possible to fit experimental and numerical results prop

In [4], a special velocity-slip boundary condition, nondar inKn, was used to obtain a mass flow-rate. The
resulting expressions are very similar to the ones obtdieee with ther-correction. The good agreement of results
[4] with the experiment indirectly confirm the validity of psessions (19), (20), (22) and (24).
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FIGURE 2. Comparison of normalized mass-fl&with the experimental data for nitrogen (triangles) and helium (points) from
[16]. Line 1 corresponds to Navier-Stokes calculations with Maxwellaigfeslip boundary conditions. Left — QGD calculations
without correction ¢ = 0). Line 2 stands fo6c= 0.88, line 3 — forSc= 0.75. Right — QGD with correctionSc= 0.75. Line 2
stands forxr = 2, line 3 —fora = 1.

CONCLUSIONS

The results obtained for isothermal microchannel flow destrate that the Navier-Stokes model with Maxwell
velocity-slip conditions is valid up t&n ~ 0.1.

The QGD equations allow to construct approximate analygixpressions for the mass flow-rate in long isothermal
microchannels, which correspond to experimental data ufrte~ 0.5, and predicts the existence of Knudsen
minimum.

The correction of a relaxation time— 1/(1+ aKn), wherea is a numerical factor of order unity, leads to the
unified approximate mass flow-rate formula for long isothedramannels, valid up to near free-molecular regime.
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